The Dynamical Behaviors in (2+1)-Dimensional Gross-Neveu Model with a Thirring Interaction

نویسندگان

  • Tae Seong Kim
  • Won-Ho Kye
  • Jae Kwan Kim
چکیده

We analyze (2+1)-dimensional Gross-Neveu model with a Thirring interaction, where a vector-vector type four-fermi interaction is on equal terms with a scalar-scalar type one. The Dyson-Schwinger equation for fermion self-energy function is constructed up to next-to-leading order in 1/N expansion. We determine the critical surface which is the boundary between a broken phase and an unbroken one in (αc, βc, Nc) space. It is observed that the critical behavior is mainly controlled by Gross-Neveu coupling αc and the region of the broken phase is separated into two parts by the line αc = α ∗ c(= 8 π ). The mass function is strongly dependent upon the flavor e-mail: [email protected] e-mail: [email protected] 1 number N for α > α∗ c , while weakly for α < α ∗ c . For α > α ∗ c , the critical flavor number Nc increases as Thirring coupling β decreases. By driving the CJT effective potential, we show that the broken phase is energetically preferred to the symmetric one. We discuss the gauge dependence of the mass function and the ultra-violet property of the composite operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Phase Structure of the Gross-Neveu Model with Thirring Interaction at the Next to Leading Order of 1=N Expansion

We study the critical behavior of the D (2 < D < 4) dimensional Gross-Neveu model with a Thirring interaction, where a vector-vector type four-fermi interaction is on equal terms with a scalar-scalar type one. By using inversion method up to the next-to-leading order of 1=N expansion, we construct a gauge invariant e ective potential. We show the existence of the chiral order phase transition, ...

متن کامل

O(1/Nf) corrections to the Thirring model in 2<d<4.

The Thirring model, that is, a relativistic field theory of fermions with a contact interaction between vector currents, is studied for dimensionalities 2 < d < 4 using the 1/N f expansion, where N f is the number of fermion species. The model is found to have no ultraviolet divergences at leading order provided a regularization respecting current conservation is used. Explicit O(1/N f) correct...

متن کامل

Applications of Massive Integrable Quantum Field Theories to Problems in Condensed Matter Physics

We review applications of the sine-Gordon model, the O(3) non-linear sigma model, the U(1) Thirring model, and the O(N) Gross–Neveu model to quasi one-dimensional quantum magnets, Mott insulators, and carbon nanotubes. We focus upon the determination of dynamical response functions for these problems. These quantities are computed by means of form factor expansions of quantum correlation functi...

متن کامل

Gross-Neveu model as a laboratory for fermion discretization

We introduce a finite volume renormalization scheme for the N-Majorana-component O(N) invariant Gross-Neveu model. Universal observables are defined that are accessible to precise numerical simulation in various discretizations and allow for an extrapolation to the continuum limit. Here first numerical results with Wilson fermions are reported. For N = 2 they reproduce exact finite volume conti...

متن کامل

Lee-Yang edge singularity in the three-dimensional Gross-Neveu model at finite temperature

We discuss the relevance of the Lee-Yang edge singularity to the finite-temperature Z2-symmetry restoration transition of the Gross-Neveu model in three dimensions. We present an explicit result for its large-N free-energy density in terms of ζ(3) and the absolute maximum of Clausen’s function. The Gross-Neveu model in d = 3 dimensions provides a remarkable example of a second order temperature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000